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Gravity currents with variable inflow 

By T. MAXWORTHYT 
Institut fur Hydromechanik, Universitat Karlsruhe, D 7500, Karlsruhe 1 

(Received 19 March 1982) 

We have performed a series of experiments on two-dimensional gravity currents for 
which the inflow rate a t  the origin is a power-law function of time, taP1. The theoretical 
results of Huppert (1982), for currents in which there is a balance between buoyancy 
and viscous forces, are found to be valid for a wide range of conditions. A large 
numbers of experiments at a critical value of a = 2 show very precise agreement with 
the theory, while values of a parameter that separates regions in which either viscous 
forces or inertial forces dominate are well within limits one would expect from the 
order-of-magnitude arguments used. 

1. Introduction 
Two recent and related papers (Didden & Maxworthy 1982; Huppert 1982) 

consider primarily the problem of a viscous gravity current for which the inflow rate 
a t  the source is constant or formed by the release of a fixed volume of fluid. The theory, 
presented in the latter paper, considers the flow to be slender so that exact results 
can be computed by making the usual assumptions of lubrication theory. (See also 
the first note added in proof in Huppert (1982) for comments on the relationship 
between his work and that of Barenblatt (1952).) The comparison between the theory 
and experiments reported in both papers is very satisfying. This second paper also 
calculates the spreading rate of viscous, two-dimensional and axisymmetric currents 
for inflow rates that vary as some arbitrary, but fixed, power of the time from the 
start of the motion. It was shown by Huppert that  there exists one critical value 
of the parameter a that separates two distinctly different types of evolution. Below 
the parameter’s critical value, which includes the constant-flow-rate and fixed- 
volume-release cases mentioned above, the initial flow is governed by a balance 
between a driving buoyancy force and a retarding inertial force with a transition to 
a balance between buoyancy forces and viscous forces a t  some time after flow 
initiation. Above the critical parameter value the reverse is true, the flow starts in 
a viscous-buoyancy balance and undergoes transition to  an inertia-buoyancy balance 
a t  a later time. At the critical value the flow exists for all time at either one or other 
of these states, depending on the value of a certain related parameter which measures 
the relative magnitude of the inertia and viscous forces. These results are sufficiently 
intriguing to prompt an experimental investigation into their validity. 

The flows are of interest to those involved in the study of motions in the natural 
environment. For example, flows of fresh water from a spring run-off into lakes and 
fjords rarely take place with a constant flow rate, and the consequent evolution of 
the intrusions thus formed may be incorrectly estimated by using a constant-flow 

t Permanent address : Departments of Mechanical and Aerospace Engineering, University of 
Southern California, Los Angeles, CA 90089. 
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model. A number of similar problems: flash floods, variable stratified flows in the 
ocean, lava flows from volcanoes, etc. are all related to the simple laboratory model 
we present here, which represents a first step on the way to a more complete 
understanding. 

2. Theoretical preliminaries 
Here we present the appropriate results from Huppert (1982) to be used in what 

follows. We consider only two-dimensional flows for which the total volume of heavy 
fluid in the current, per unit width of channel, varies as qta.  For the case of a 
viscous-buoyancy force balance this theory gives : 

where L is the total length of the current, g' a reduced gravity equal to (Ap lp )  g ,  Ap 
being the density difference between the current and its surroundings and p the 
density of the intrusion, k ,  is a calculable constant (related to Huppert's T,J, by 
k ,  = q,($)?) and v is the kinematic viscosity of the intrusion. The viscosity of the 
ambient fluid does not appear, since it is assumed that the viscous stress a t  the free 
surface of the current is very much smaller than that due to the friction a t  the bottom 
(see Huppert 1982). 

The inertia-buoyancy balance gives 

L = kI (a )  {g'q}i t i@+'),  (2) 

by order-of-magnitude arguments when it  is assumed that the motion of the intrusion 
is self-similar and the flow is not controlled by the non-similar, dynamical processes 
occuring a t  the head of the current. The constant k , ( a )  can only be found by recourse 
to  experiments. 

The transition time a t  which inertial and viscous forces are equal can be calculated 
either by equating inertial and viscous forces or by noting that a t  transition (1) and 
(2) must be identical (see $4 also), and is given b y t  

The critical value of a mentioned in $ 1 is then seen to be g. For a = a inertial effects 
are small for all time if the dimensionless Julian number 

For a < f ,  t,R is the time for transition from an inertial to a viscous flow, and for 
a > a i t  is the time for transition from viscous to inertial flow. 

Based on these predictions we designed an experiment to test their validity, the 
results of which are presented in $4 and discussed in $5.  An appendix on the flows 
created by discontinuous changes in flow rate is presented finally, since they have 
some bearing on the results presented in the main body of the paper. 

t The fact that the transition time is so sensitive to changes in the values of the constants, 
especially as will be seen to changes in k I (a ) ,  is simply a reflection of the fact that  the slopes of 
the two relationships (1) and (2) are generally very closely matched, and hence a small change in 
k,(n) results in an enormous change in tTR. 
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3. Experimental procedure 
The tank used in this study was 3 m long, 50 cm deep and 20 cm wide. It was filled 

to a depth of 40 cm with fresh water, a small portion of which was withdrawn and 
mixed with an accurately measured amount of common salt. This ensured that any 
density difference was only due to the salinity difference and that temperature and 
possible doubly diffusive effects were avoided (see Maxworthy 1983). This dense fluid 
was dyed and placed in a reservoir, which in turn was connected to a two-dimensional 
flow inlet diffuser in the bottom of the tank via a pump, flowmeter and control valve. 
The flowmeter was a conventional rotameter with a modified scale. Depending on 
the value of a required, marks were placed a t  intervals on a strip of paper taped to 
the flowmeter tube. Each mark represented the required location of the flowmeter 
bob a t  a given instant in order to preserve not only the correct value of 01 but also 
the correct value of q. In  practice this meant that  the flow rate had to be changed 
to a new value in discrete steps. Thus in order to change the value of q for fixed a, 
experiments were run in which the flow rate was nominally changed to a new value 
a t  5, 10, 15, 20, 30 or 40 s intervals ten times during any one experiment. The latter 
three cases, involving changes over the larger time intervals, were actually divided 
into smaller divisions, and, correspondingly, changed more frequently, in order to 
approach the desired continuous flow-rate change more closely. 

The dyed gravity current was photographed against a bright background with a 
length scale, stopwatch and pointer, to indicate the nose of the current, all within 
the field of view. 

4. Results 
Based on the comments in $2 we expect the most interesting behaviour to occur 

for a value of a = a, and performed 24 experiments a t  four different values of Apjp 
(0.0013, 0.0038, 0.012 and 0.063) and six values of q (0.0182, 0.0230, 0.0311, 0.0380, 
00514 and 0.088 cm2/si). 

Two sets of representative results are shown for Apjp = 0.0013 and 0.012 in figures 
1 and 2. I n  figure 1 we show curves for six values of q which indicate a transition 
from a viscous-buoyancy balance to an inertial-buoyancy value a t  a value of J = 2.9, 
i.e. where the slope of the line of L,  for fixed t, versus q changes slope from 0.6 to 
0-33 (equations ( 1 )  and (2)). Note also from both ( 1 )  and (2) that the predicted slope 
of the six lines is 1-25 and that the measured values are consistently lower a t  1.16. 
Similarly in figure 2 we show that the slope of all lines of L vs. t is 1-18 and that the 
viscous-inertial transition takes place at a value of J = 3.5. For the other cases not 
presented in detail here, n = 1-20 and J = 3.4 for Apjp = 0.0038 and n = 1.21 for 
Apjp = 0.063. No observable transition took place for this later value of a, indicating 
that JTR was smaller than the smallest value of J x 60 of this set of experiments. 
From the three experiments for which a transition was found, the average value of 
JT,  is 32 .  

Equations (1)  and (2) have been used to create a scaling that reduces all of these 
data to two plots. I n  figure 3 we show the data for those cases for which L ,  a t  fixed 
t ,  scales as qo'6, i.e. the viscous cases. We note an interesting result: although all the 
individual curves had values of n less than the theoretical value of 1-25, when 
combined they overlap in such a way that the theoretical curve is a remarkably good 
fit to the data. A value of the constant of 0.756 appears to fit the data slightly better 
than the theoretical value of 0.734. and we will use the former value in what follows. 
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FIGURE 1. Current length L versus time t for Applp = 00013, a = $, and length a t  a fixed time L(tF) 
versusp:-+--,g = 0~0182cm2/s~;-0-,0023, tworuns;-~---,0~0311;-x-,0038;-oo--, 
00514; - +-, 0.088. The inserts in the lower right-hand corners of this and figure 2 give the length 
of the current at a fixed time L ( t p )  versus q(-q-) for each case, and is used to determine the 
value of JTR. 

Similarly the inertial cases, i.e. those in which L,  a t  fixed t ,  scales as q033, are shown in 
figure 4. Here the data scatter is somewhat greater, but again a slope of n = 1.25 fits 
well with a constant k ,  = 0.726. 

From (3) an averaged value of the transition number J T R  must be unity, with 
(kv( i ) /kI(3) l5  = 2.2, while, as we have already shown, the value of J T R  from the raw 
data curves is 3.2. However, because JTR K q& the values of qTR in the latter cases 
would only need to have been raised by a small amount, approximately 15 yo, to bring 
about agreement between the two results. Thus, while (3) with (kv(f)/kl(:))l5 = 2.2 
gives the best estimate of J T R ,  in the range 0.5 < J < 5 either (1) or (2) gives an 
adequate description of the measured spreading relationship, to within approximately 
10%. 

We also performed a smaller number of experiments for values of a on either side 
of the critical value. I n  figure 5 we show the results of four experiments for which 
a = 4. I n  all cases the slope is that  of the viscous-buoyancy balance, after an initial 
slope which is somewhat less than unity. This latter characteristic, which is mainly 
a consequence of the experimental technique (see $5), is also seen in some of the curves 
of figures 1 and 2 and will be seen again in the results for other values of a. For 
example, experiments run at the one other value of a below the critical value are 
presented in the appendix. For the upper curve of figure 8 , a  = 1 and again the slope 
changes are from quite small values to the predicted one so that agreement with the 
theory is excellent and is actually better than that reported in Didden & Maxworthy 
(1982). 
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FIGURE 2. Current length L versus time t for Ap/p = 0.012, a = i, and length at a fixed time L(tp)  
versusq:-+-,q = 00182 cm2/sf;-o-,0~023, tworuns;-b-,0~0311 ;-x---,0~038;-00-, 
005  14 ; - + -, 0.088 ; - 7 -, L(tF) versus q. 
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FIGURE 3. L/[g’g3/v]i  versus time t for buoyancy-viscous currents for six values of p and four values 
of Applp: -0-, Ap/p = 00013; -+-, 0.0038; -0--, 0012;  -x- ,  0063. Theoretical curve 
from Huppert (1982), L/[q’q3/lv]: = 0734&. 
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FIGURE 4. L/[g'p]i versus t for buoyancy-inertial currents: - O--, 

Ap/p=0.0013; -t-, 00038; -0 - ,  0012; - x - ,  0063. 
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FIGURE 5. L versus t for a = # and A p / p  = 0012, showing agreement 

with Huppert (1982) except at very early times. 

For values of a above the critical values we present two sets of results. For a = 3 
(figure 6) the initial viscous-buoyancy phase, in this case, is in close agreement with 
the theory of Huppert (1982), with the clearly observed transition to a lower slope 
close to that for an inertial-buoyancy balance (i.e. n = 1.667) taking place at 195 s 
for the lower curve and 175 s for the upper. Here again the initial slope leading to 
the n = 2-0 curve is very small (see $5). In  figure 7 the results for a = 2 are presented. 



Gravity currents with variable in$ow 253 

400 

200 

L 
(cm) 

100 

80 

60 

40 

20 

10 

a =  3 

Transition, n = 2.0 

I 0 

-+ 1.667 

t (9 
FIGURE 6. L versus t for a = 3 and Ap/p = 0.012. The agreement with theory for the initial 
buoyancy-viscous balance is good but the time a t  which transition to an inertial-buoyancy balance 
takes place is much smaller than estimated by using Huppert (1982). 
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FIGURE 7. L versus t for a = 2 and Ap/p = 0.012. As in figure 6, transition, as indicated by arrows, 
takes place too soon, with the result that the inertially dominated region (n = 1.333) is much lower 
than one would expect. 
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I n  the two cases for which a viscous-buoyancy balance exists initially the curves are 
both quite close to  the theoretically predicted results, with transition to an 
inertial-buoyancy balance (n = 1.333) taking place around 130 s in both cases. In  all 
cases the agreement between the predicted slope of the inertial-buoyancy r6gime and 
the measurements is good but the values of k,(a) show a considerable variation in 
contrast with the smaller, but nonetheless significant, scatter found for a = (figure 
4). There is a monotonic increase in k , ( 2 ) ,  from 0.39 to 0.56, with q ,  for example, which 
suggests that  perhaps mixing a t  the entry diffuser is important. To determine the 
validity of such a suggestion would require a detailed study of the flow field which 
is beyond the scope of the present experiments. 

Finally we explain the change in slope over the last few points of the upper curves 
in both figures 5 and 7 as a consequence of the limitation of thc pump used in the 
experiments. In  these cases after 50 s its full capacity was being used so that for longer 
times the flow rate was constant. This information was eventually transmitted to the 
nose of the current, by waves on the interface between the two fluids, and it then 
responded to the new input conditions with a slope close to one, as would seem to 
be appropriate for an inertial-buoyancy current with constant inflow (but see the 
appendix for further comments). 

5.  Discussion 
It appears that the arguments and accompanying theory put forward by Huppert 

(1982) (and to a lesser degree those in Didden & Maxworthy 1982) explain our present 
experiments quite well. Only two non-trivial discrepancies exist. The first concerns 
the initial slopes of some of the curves before they asymptote to their predicted valucs. 
I n  extreme cases, i.e. for a = 3, these low values of the slope (usually less than k) 
persist for a long time, and in others, i.e. for a = $ and 2 ,  often overlap regions where 
flow-regime transitions might have taken place. These effects are almost entirely due 
to our experimental procedure, which required that we start each experiment with 
a small but nonetheless finite flow rate. Without some form of automated control 
system it  was not possible to start the flow smoothly from zero, and so invariably 
the current was slightly longer than it should have been. Of course these small effects 
are greatly magnified on a log-log plot but they clearly have no effect on the final 
asymptotic behaviour, which, in every case but one, agreed to within 2 or 3 yo of the 
theoretical values. 

The second and more curious result concerns the variations in k l (a )  with q even 
when the temporal behaviour of the current indicates that  the flow is self-similar and 
that the inertia-buoyancy balance represented by ( 2 )  is apparently valid. This 
question cannot be answered without recourse to the use of far more sophisticated 
equipment than that used here, since it will likely involve a direct measurement of 
the inertia and density distribution of the current and how these vary with the input 
parameters. 

Finally we feel obliged to comment upon the initially surprising result that there 
are flows that can actually start by being viscously dominated. This a t  first might 
seem unlikely because all of the flows considered before these experiments and the 
theory of Huppert (i.e. these for which 01 = 0 or 1 )  always start with an inertial- 
buoyancy behaviour and then undergo transition to a viscously dominated state. For 
values of a > $, one can use the following physical arguments to show the logic of 
the result. One can divide the smoothly changing flow rate into small discrete steps, 
as in our experiment in fact. The initial small constant flow is such that i t  undergoes 



Gravity currents with variable inJlow 255 

transition to a viscously controlled state very quickly. The next small increment is 
also quickly damped and so on until the flow rate is such that transition to a viscous 
state can no longer take place fast enough before a new increment of flow arrives. 
Finally transition to an inertial-buoyancy balance is complete. 

For values of a < 1 this type of argument also works well since now the flow rate 
is a decreasing function of time, having been infinite a t  t = 0, and one might expect 
an ‘inertial’ current to be formed initially. I n  the range 1 < a < a again the initial 
flow rate is zero but it presumably increases fast enough for an  inertial current to 
be formed a t  first and then to undergo transition to a viscously controlled flow. 

The work reported here was performed while I was on sabbatical leave a t  the 
Institut fur Hydromechanik at the Universitat Karlsruhe as an Alexander von 
Humboldt U.S. Senior Scientist Awardee. I wish to thank Professor E. Naudascher 
for making the facilities of his institute available to me. I owe an especial debt to 
Professor Franz Durst, not only for applying for the award for me but also for making 
my stay at Karlsruhe such a rewarding experience, both scientifically and personally. 
Dr R. Ermshaus generously made the photographic equipment available, while Dr 
K. Faust collected all of the necessary equipment from the resources of the Institut 
Wasserbau I11 direeted by Professor E. Plate. The manuscript was typed expertly 
by Frau R. Zschernitz and I thank her for dealing with my changes so patiently. 
Finally, I owe a great deal to my correspondence and discussions with Dr H. E. 
Huppert. He was a constant source of encouragement and valuable ideas and helped 
bring some order to much of my confusion over some of the more subtle aspects of 
this work. 
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FIGURE 8. L versus t for p = 0012, with sudden large change in flow rate from one constant value 
to another a t  the times indicated by the arrows: - Y - ,  q changes from 090  to 2.77 cm2/s; - -, 
047 to 1.90 cm2/s; -0-, 0.40 to 2.70 cmz/s; -+-, 030 to 082  to 2.72 cmz/s. Note displaced 
abscissae for the lower curve. 
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FIGURE 9. Photographs of the arrival of solitary waves at the nose of the gravity 
current after the flow rate was suddenly changed to a new value. 

Appendix. Gravity currents with sudden flow-rate changes 
As part of a series of initial experiments performed before those described in the 

main body of the paper, we explored the flow created when the flow rate into the 
current was suddenly changed from one constant value to  another much higher value. 
Some of the results are shown in figure 8, where the initial slope is 0.8, as in Didden 
& Maxworthy (1982). At the times indicated by the arrows the flow rate was suddenly 
increased. A sequence of solitary waves, ordered by amplitude, was formed and these 
propagated on the interface between the two fluids until they reached the nose (see 
figure 9). At this point the latter became more bulbous and the slope of the curves 
increased rapidly to what appears to  be a new constant slope considerably larger than 
unity in all cases. Since the current must eventually be indistinguishable from one 
that started with the final value of the flow, we presume that there is a suitable virtual 
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origin that would show the final current on a trajectory with a slope of 0.8 or 1.0, 
depending on the force balance; unless, of course, the final asymptotic state had not 
yet been reached in the experiments. This result contrasts with that shown in the 
upper curves of figures 5 and 7, in which the anticipated slope of n = 1 was reached 
quickly when the flow rate became constant. I n  this latter case, of course, no solitary 
waves are possible, and this may account in some way for the different effects in the 
two cases. We have made no attempt to find this origin in the present cases, since 
the observation in which we had the greatest interest was to show the presence of 
solitary waves and indicate their importance as carriers of information in this flow 
field. 

I n  the more general case, however, when the flow rate varies more or less smoothly 
it seems just as likely that this information will be carried by kinematic waves 
(Lighthill & Whitham 1955) as in flood waves on rivers, among many examples, and 
that dispersion will be reduced in importance. 
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